Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Ethyl-1-methyl-3-(2-nitrobenzoyl)thiourea

Aisha A. Al-abbasi^a and Mohammad B. Kassim^{a,b}*

^aSchool of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia, and ^bFuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia Correspondence e-mail: mbkassim@ukm.my

Received 20 June 2011; accepted 22 June 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.124; data-to-parameter ratio = 13.6.

In the title compound, $C_{11}H_{13}N_3O_3S$, the benzene ring is twisted relative to the amidic fragment, forming a dihedral angle of 27.26 (9)°. The thiono and carbonyl groups are trans with respect to the C–N bond. Intermolecular N–H \cdot ··S and C-H···O hydrogen bonds link the molecules in the crystal structure.

Related literature

For the synthesis, see: Al-abbasi et al. (2010). For related structures and background references, see: Shanmuga Sundara Raj et al. (1999); Arslan et al. (2003); Al-abbasi & Kassim (2011). For standard bond lengths, see: Allen et al. (1987) and for bond lengths in other substituted thioureas, see: Nasir et al. (2011); Pérez et al. (2011).

Experimental

Crystal data $C_{11}H_{13}N_3O_3S$ $M_r = 267.30$ Monoclinic, $P2_1/n$ a = 11.447 (2) Å b = 7.8664 (15) Åc = 15.159 (3) Å $\beta = 107.128 \ (4)^{\circ}$

V = 1304.5 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.25 \text{ mm}^-$ T = 298 K $0.55\,\times\,0.38\,\times\,0.21$ mm

Data collection

Bruker SMART APEX CCD area-7105 measured reflections detector diffractometer 2294 independent reflections Absorption correction: multi-scan 1971 reflections with $I > 2\sigma(I)$ (SADABS; Bruker, 2000) $R_{\rm int} = 0.020$ $T_{\min} = 0.874, T_{\max} = 0.949$

Refinement

R

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.124$	independent and constrained
S = 1.06	refinement
2294 reflections	$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$
169 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$
1 restraint	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots S1^{i}$	0.85 (2)	2.55 (2)	3.3828 (18)	167 (2)
C6 - H6 \cdots O3^{ii}	0.93	2.41	3.317 (3)	164

Symmetry codes: (i) -x + 1, -y, -z; (ii) x, y + 1, z.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

The authors thank Universiti Kebangsaan Malaysia for UKM-GUP-BTT-07-30-190 and UKM-OUP-TK-16-73/2010 grants and sabbatical leave for MBK, and the Kementerian Pengajian Tinggi, Malaysia, for the UKM-ST-06-FRGS0111-2009 research fund. The authors acknowledge B. M. Yamin for the data collection and AAA also thanks the Libyan Ministry of Higher Education and Sabha University for her PhD scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2299).

References

- Al-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.
- Al-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, 02896
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Arslan, H., Flörke, U. & Külcü, N. (2003). Acta Cryst. E59, 0641-0642.
- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Nasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1218.
- Pérez, H., Corrêa, R. S., Plutín, A. M., Álvarez, A. & Mascarenhas, Y. (2011). Acta Cryst. E67, 0647.
- Shanmuga Sundara Raj, S., Puviarasan, K., Velmurugan, D., Jayanthi, G. & Fun, H.-K. (1999). Acta Cryst. C55, 1318-1320.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o1840 [doi:10.1107/S1600536811024652]

1-Ethyl-1-methyl-3-(2-nitrobenzoyl)thiourea

A. A. Al-abbasi and M. B. Kassim

Comment

The title compound, I, is a thiourea derivative analogous to our previously reported compounds (Al-abbasi & Kassim, 2011). Bond distances are similar to those usually found in other substituted thioureas [Nasir *et al.* (2011) & Pérez *et al.* (2011)]. The C–S and C–O exhibited the expected double-bond character. However, the C–N bond lengths are intermediate between a single and double, indicating a partial electron delocalization in the O1/C7/N1/C8/S1 fragment.

The phenyl ring is twisted due to the presence of the nitro group (O2O3N3) in *ortho* position. A rotation around C1—C7 bond makes the oxygen atom (O1) perpendicular to the phenyl ring mean planes and the torsion angles of C2C1C701 and C6C1C701 are -95.5 (2) and 86.5 (2)°, respectively. The dihedral angle between the mean planes of the thiourea (S1/N1/N2/C8/C9) and the phenyl ring (C1/C2/C3/C4/C5/C6/) plane is 27.56 (10)°. Other bond lengths and angles are in normal ranges (Allen *et al.* 1987).

The crystal structure is stabilized by the intermolecular N1—H1A···S1 and C5—H5A···O3 hydrogen bonds linking the molecules into a dimer resulting in a channel along [101] (Fig. 2).

Experimental

The title compound was prepared according to a previously reported procedure (Al-abbasi *et al.*, 2010). A very pale browon colour crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from ethanol solution at room temperature (yield 78%).

Refinement

Hydrogen atom of the amide group was determined from the diffrence Fourrier map and N—H was initially fixed at 0.86(0.01) Å and allowed to be refined on the parent N atom with $U_{iso}(H) = 1.2U_{eq}(N)$. All other H atoms were postioned geometrically with C—H bond lengths in the range 0.93 - 0.97 Å and refined in the riding model approximation with $U_{iso}(H)=1.2U_{eq}(C,N)$, except for methyl group where $U_{iso}(H)=1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. A packing diagram of the title compound viewed down the *a*-axis showing the inter-molecular hydrogen bonds N1—H1A···S1 (-x + 1, -y, -z) and C6—H6···O3 (x, y + 1, z).

1-Ethyl-1-methyl-3-(2-nitrobenzoyl)thiourea

Crystal data	
C ₁₁ H ₁₃ N ₃ O ₃ S	F(000) = 560
$M_r = 267.30$	$D_{\rm x} = 1.361 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 4015 reflections
a = 11.447 (2) Å	$\theta = 2.0-25.0^{\circ}$
b = 7.8664 (15) Å	$\mu = 0.25 \text{ mm}^{-1}$
c = 15.159 (3) Å	T = 298 K
$\beta = 107.128 \ (4)^{\circ}$	Block, brown
$V = 1304.5 (4) \text{ Å}^3$	$0.55 \times 0.38 \times 0.21 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2294 independent reflections
Radiation source: fine-focus sealed tube	1971 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.020$
ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -13 \rightarrow 13$
$T_{\min} = 0.874, \ T_{\max} = 0.949$	$k = -7 \rightarrow 9$
7105 measured reflections	$l = -15 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.124$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.065P)^2 + 0.531P]$ where $P = (F_o^2 + 2F_c^2)/3$

2294 reflections	$(\Delta/\sigma)_{max} < 0.001$
169 parameters	$\Delta\rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.69163 (5)	0.06431 (8)	0.07382 (4)	0.0575 (2)
01	0.49702 (13)	0.2128 (2)	0.24893 (10)	0.0608 (4)
O2	0.44396 (18)	-0.1541 (2)	0.17973 (16)	0.0811 (6)
03	0.2858 (2)	-0.3156 (2)	0.14610 (17)	0.0984 (7)
N1	0.48480 (14)	0.1814 (2)	0.09706 (11)	0.0435 (4)
N2	0.65025 (15)	0.3643 (2)	0.14053 (13)	0.0528 (5)
N3	0.3344 (2)	-0.1771 (2)	0.15678 (14)	0.0612 (5)
C1	0.30487 (17)	0.1334 (2)	0.14682 (13)	0.0401 (4)
C2	0.25371 (19)	-0.0265 (3)	0.14295 (14)	0.0459 (5)
C3	0.1301 (2)	-0.0513 (4)	0.12710 (16)	0.0636 (7)
Н3	0.0984	-0.1604	0.1258	0.076*
C4	0.0545 (2)	0.0879 (4)	0.11328 (18)	0.0731 (8)
H4	-0.0291	0.0735	0.1026	0.088*
C5	0.1024 (2)	0.2479 (4)	0.11526 (19)	0.0728 (8)
Н5	0.0507	0.3418	0.1050	0.087*
C6	0.2264 (2)	0.2709 (3)	0.13230 (16)	0.0558 (6)
H6	0.2577	0.3803	0.1341	0.067*
C7	0.43942 (17)	0.1743 (2)	0.17127 (14)	0.0433 (5)
C8	0.60936 (17)	0.2138 (3)	0.10694 (13)	0.0441 (5)
C9	0.7795 (2)	0.4114 (3)	0.16004 (17)	0.0607 (6)
H9A	0.8292	0.3093	0.1710	0.073*
H9B	0.8039	0.4801	0.2156	0.073*
C10	0.8020 (3)	0.5099 (4)	0.0808 (2)	0.0793 (8)
H10A	0.7897	0.4366	0.0282	0.119*
H10B	0.8844	0.5518	0.0987	0.119*
H10C	0.7461	0.6038	0.0651	0.119*
C11	0.5729 (2)	0.5026 (3)	0.1556 (2)	0.0737 (8)
H11A	0.4905	0.4853	0.1175	0.111*
H11B	0.6028	0.6090	0.1400	0.111*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H11C	0.5747	0.5042	0.2193	0.111*
H1A	0.4498 (18)	0.123 (3)	0.0494 (11)	0.051 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0395 (3)	0.0708 (4)	0.0647 (4)	0.0004 (2)	0.0194 (3)	-0.0241 (3)
01	0.0506 (9)	0.0857 (12)	0.0461 (9)	-0.0004 (8)	0.0142 (7)	-0.0123 (8)
02	0.0695 (12)	0.0584 (11)	0.1181 (16)	0.0213 (9)	0.0318 (11)	0.0114 (10)
03	0.134 (2)	0.0423 (10)	0.1218 (18)	-0.0117 (11)	0.0429 (15)	-0.0064 (10)
N1	0.0362 (8)	0.0513 (10)	0.0453 (9)	-0.0046 (7)	0.0156 (7)	-0.0126 (8)
N2	0.0415 (9)	0.0572 (11)	0.0618 (11)	-0.0084 (8)	0.0185 (8)	-0.0138 (9)
N3	0.0866 (15)	0.0377 (10)	0.0639 (12)	0.0017 (10)	0.0295 (11)	0.0017 (8)
C1	0.0402 (10)	0.0417 (10)	0.0428 (10)	0.0035 (8)	0.0190 (8)	-0.0007 (8)
C2	0.0504 (11)	0.0470 (11)	0.0449 (11)	0.0001 (9)	0.0209 (9)	0.0002 (8)
C3	0.0608 (14)	0.0764 (17)	0.0602 (14)	-0.0244 (13)	0.0279 (12)	-0.0070 (12)
C4	0.0389 (12)	0.118 (2)	0.0658 (16)	-0.0025 (14)	0.0213 (11)	-0.0029 (15)
C5	0.0510 (14)	0.090 (2)	0.0805 (18)	0.0280 (14)	0.0242 (12)	0.0086 (14)
C6	0.0536 (12)	0.0485 (12)	0.0698 (14)	0.0113 (10)	0.0252 (11)	0.0041 (10)
C7	0.0405 (10)	0.0429 (11)	0.0497 (11)	0.0049 (8)	0.0181 (9)	-0.0035 (8)
C8	0.0367 (10)	0.0560 (12)	0.0400 (10)	-0.0039 (9)	0.0122 (8)	-0.0071 (8)
С9	0.0448 (12)	0.0725 (15)	0.0638 (14)	-0.0165 (11)	0.0145 (10)	-0.0187 (12)
C10	0.0656 (16)	0.0856 (19)	0.090 (2)	-0.0134 (14)	0.0287 (14)	-0.0004 (16)
C11	0.0675 (16)	0.0533 (14)	0.107 (2)	-0.0033 (12)	0.0356 (15)	-0.0200 (14)

Geometric parameters (Å, °)

S1—C8	1.674 (2)	С3—Н3	0.9300
O1—C7	1.206 (2)	C4—C5	1.370 (4)
O2—N3	1.212 (3)	C4—H4	0.9300
O3—N3	1.212 (3)	C5—C6	1.378 (3)
N1—C7	1.372 (2)	С5—Н5	0.9300
N1—C8	1.412 (2)	С6—Н6	0.9300
N1—H1A	0.849 (10)	C9—C10	1.514 (4)
N2—C8	1.319 (3)	С9—Н9А	0.9700
N2—C11	1.462 (3)	С9—Н9В	0.9700
N2—C9	1.469 (3)	C10—H10A	0.9600
N3—C2	1.479 (3)	C10—H10B	0.9600
C1—C2	1.381 (3)	C10—H10C	0.9600
C1—C6	1.382 (3)	C11—H11A	0.9600
C1—C7	1.509 (3)	C11—H11B	0.9600
C2—C3	1.378 (3)	C11—H11C	0.9600
C3—C4	1.372 (4)		
C7—N1—C8	122.31 (16)	С1—С6—Н6	119.6
C7—N1—H1A	118.6 (15)	O1—C7—N1	124.04 (18)
C8—N1—H1A	113.3 (15)	O1—C7—C1	121.22 (17)
C8—N2—C11	124.45 (18)	N1—C7—C1	114.38 (17)
C8—N2—C9	121.75 (18)	N2—C8—N1	115.81 (17)

C11—N2—C9	113.66 (19)	N2—C8—S1	125.42 (15)
O3—N3—O2	124.6 (2)	N1—C8—S1	118.75 (15)
O3—N3—C2	117.3 (2)	N2-C9-C10	111.5 (2)
O2—N3—C2	118.12 (18)	N2—C9—H9A	109.3
C2—C1—C6	117.29 (18)	С10—С9—Н9А	109.3
C2—C1—C7	126.44 (17)	N2—C9—H9B	109.3
C6—C1—C7	116.16 (18)	С10—С9—Н9В	109.3
C3—C2—C1	122.5 (2)	Н9А—С9—Н9В	108.0
C3—C2—N3	118.5 (2)	C9—C10—H10A	109.5
C1—C2—N3	118.97 (18)	C9—C10—H10B	109.5
C4—C3—C2	118.9 (2)	H10A—C10—H10B	109.5
С4—С3—Н3	120.6	C9—C10—H10C	109.5
С2—С3—Н3	120.6	H10A—C10—H10C	109.5
C5—C4—C3	120.0 (2)	H10B-C10-H10C	109.5
С5—С4—Н4	120.0	N2—C11—H11A	109.5
С3—С4—Н4	120.0	N2-C11-H11B	109.5
C4—C5—C6	120.5 (2)	H11A—C11—H11B	109.5
С4—С5—Н5	119.8	N2—C11—H11C	109.5
С6—С5—Н5	119.8	H11A—C11—H11C	109.5
C5—C6—C1	120.9 (2)	H11B-C11-H11C	109.5
С5—С6—Н6	119.6		
C6—C1—C2—C3	-1.2 (3)	C8—N1—C7—O1	8.5 (3)
C7—C1—C2—C3	174.71 (19)	C8—N1—C7—C1	-178.37 (17)
C6—C1—C2—N3	179.13 (19)	C2-C1-C7-O1	-95.5 (3)
C7—C1—C2—N3	-5.0 (3)	C6—C1—C7—O1	80.5 (3)
O3—N3—C2—C3	5.7 (3)	C2-C1-C7-N1	91.2 (2)
O2—N3—C2—C3	-172.8 (2)	C6—C1—C7—N1	-92.9 (2)
O3—N3—C2—C1	-174.6 (2)	C11—N2—C8—N1	-8.5 (3)
O2—N3—C2—C1	6.9 (3)	C9—N2—C8—N1	176.06 (19)
C1—C2—C3—C4	1.0 (3)	C11—N2—C8—S1	170.1 (2)
N3—C2—C3—C4	-179.3 (2)	C9—N2—C8—S1	-5.4 (3)
C2—C3—C4—C5	0.1 (4)	C7—N1—C8—N2	-63.8 (3)
C3—C4—C5—C6	-0.9 (4)	C7—N1—C8—S1	117.53 (18)
C4—C5—C6—C1	0.6 (4)	C8—N2—C9—C10	96.1 (3)
C2—C1—C6—C5	0.4 (3)	C11—N2—C9—C10	-79.8 (3)
C7—C1—C6—C5	-175.9 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!$
N1—H1A···S1 ⁱ	0.85 (2)	2.55 (2)	3.3828 (18)	167.(2)
C6—H6···O3 ⁱⁱ	0.93	2.41	3.317 (3)	164
Symmetry codes: (i) $-x+1, -y, -z$; (ii) $x, y+1, z$.				

